Skip to main content  Contents  Prev  Up Next  \(\newcommand{\markedPivot}[1]{\boxed{#1}}
\newcommand{\IR}{\mathbb{R}}
\newcommand{\IC}{\mathbb{C}}
\renewcommand{\P}{\mathcal{P}}
\renewcommand{\Im}{\operatorname{Im}}
\newcommand{\RREF}{\operatorname{RREF}}
\newcommand{\vspan}{\operatorname{span}}
\newcommand{\setList}[1]{\left\{#1\right\}}
\newcommand{\setBuilder}[2]{\left\{#1\,\middle|\,#2\right\}}
\newcommand{\unknown}{\,{\color{gray}?}\,}
\newcommand{\drawtruss}[2][1]{
\begin{tikzpicture}[scale=#1, every node/.style={scale=#1}]
\draw (0,0) node[left,magenta]{C} -- 
      (1,1.71) node[left,magenta]{A} -- 
      (2,0) node[above,magenta]{D} -- cycle;
\draw (2,0) -- 
      (3,1.71) node[right,magenta]{B} -- 
      (1,1.71) -- cycle;
\draw (3,1.71) -- (4,0) node[right,magenta]{E} -- (2,0) -- cycle;
\draw[blue] (0,0) -- (0.25,-0.425) -- (-0.25,-0.425) -- cycle;
\draw[blue] (4,0) -- (4.25,-0.425) -- (3.75,-0.425) -- cycle;
\draw[thick,red,->] (2,0) -- (2,-0.75);
#2
\end{tikzpicture}
}
\newcommand{\trussNormalForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, blue,->] (4,0) -- (3.5,0.5);
}
\newcommand{\trussCompletion}{
\trussNormalForces
\draw [thick, magenta,<->] (0.4,0.684) -- (0.6,1.026);
\draw [thick, magenta,<->] (3.4,1.026) -- (3.6,0.684);
\draw [thick, magenta,<->] (1.8,1.71) -- (2.2,1.71);
\draw [thick, magenta,->] (1.6,0.684) -- (1.5,0.855);
\draw [thick, magenta,<-] (1.5,0.855) -- (1.4,1.026);
\draw [thick, magenta,->] (2.4,0.684) -- (2.5,0.855);
\draw [thick, magenta,<-] (2.5,0.855) -- (2.6,1.026);
}
\newcommand{\trussCForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, magenta,->] (0,0) -- (0.4,0.684);
\draw [thick, magenta,->] (0,0) -- (0.5,0);
}
\newcommand{\trussStrutVariables}{
\node[above] at (2,1.71) {\(x_1\)};
\node[left] at (0.5,0.866) {\(x_2\)};
\node[left] at (1.5,0.866) {\(x_3\)};
\node[right] at (2.5,0.866) {\(x_4\)};
\node[right] at (3.5,0.866) {\(x_5\)};
\node[below] at (1,0) {\(x_6\)};
\node[below] at (3,0) {\(x_7\)};
}
\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\DeclareMathOperator{\arcsec}{arcsec}
\DeclareMathOperator{\arccot}{arccot}
\DeclareMathOperator{\arccsc}{arccsc}
\newcommand{\tuple}[1]{\left\langle#1\right\rangle}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle     \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle        \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle      \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\) 
Section   9.4   Taylor Series (PS4) 
 
Learning Outcomes 
Subsection   9.4.1   Activities 
 
Activity   9.4.1 . 
 
The following tasks will help us find a mechanism to produce a power series given information about its derivatives.
(a) Find the 2nd derivative of \(x^2\text{.}\) 
\(\displaystyle 2x\) 
\(\displaystyle 2\) 
\(\displaystyle 4x\) 
\(\displaystyle 4\) 
 (b) Find the 3rd derivative of \(x^3\text{.}\) 
\(\displaystyle 2\) 
\(\displaystyle 3x\) 
\(\displaystyle 6\) 
\(\displaystyle 12x\) 
 (c) Find the 4th derivative of \(x^4\text{.}\) 
\(\displaystyle 18\) 
\(\displaystyle 24\) 
\(\displaystyle 32\) 
\(\displaystyle 64\) 
 (d) Based on these results, which of the following should always equal the \(n\) th derivative of \(x^n\)  with respect to \(x\text{?}\) 
\(\displaystyle n\) 
\(\displaystyle n^2\) 
\(\displaystyle n!\) 
\(\displaystyle n^n\) 
 
Activity   9.4.2 . 
 
Let’s use derivatives to rediscover the sequence \(a_n\)  which gives a power series representation for \(e^x\text{.}\) 
(a) 
Let’s say that
\begin{equation*}
e^x=\sum_{n=0}^\infty a_nx^n=a_0+a_1x+a_2x^2+a_3x^3+a_4x^4\dots\text{.}
\end{equation*}
 
What must \(a_0\)  be to satisfy \(e^0=1\text{?}\) 
(b) 
Then,
\begin{equation*}
\frac{d}{dx}[e^x]=e^x=a_1+2a_2x+3a_3x^2+4a_4x^3\dots\text{.}
\end{equation*}
 
What must \(a_1\)  be to also satisfy \(e^0=1\text{?}\) 
(c) 
Then,
\begin{equation*}
\frac{d^2}{dx^2}[e^x]=e^x=2a_2+6a_3x+12a_4x^2+\dots\text{.}
\end{equation*}
 
What must \(a_2\)  be to also satisfy \(e^0=1\text{?}\) 
(d) 
Then,
\begin{equation*}
\frac{d^3}{dx^3}[e^x]=e^x=6a_3+24a_4x+\dots\text{.}
\end{equation*}
 
What must \(a_3\)  be to also satisfy \(e^0=1\text{?}\) 
(e) So this \(6a_3\)  term was obtained from the fact that the \(3\) rd derivative of \(x^3\)  is \(3!=6\text{.}\) 
So finally, we may skip ahead to the \(n\) th derivative:
\begin{equation*}
\frac{d^n}{dx^n}[e^x]=e^x=n!\cdot a_n+(n+1)!\cdot a_{n+1}\cdot x+\dots\text{.}
\end{equation*}
 
What must \(a_n\)  be to also satisfy \(e^0=1\text{?}\) 
(f) 
This reveals the power series we previously found for \(e^x\text{:}\) 
\begin{equation*}
e^x=\sum_{n=0}^\infty a_nx^n=\sum_{n=0}^\infty \frac{1}{n!}x^n\text{.}
\end{equation*}
 
So in general, if \(f(x)=a_0+a_1x+a_2x^2+\dots\text{,}\)  then
\begin{equation*}
\frac{d^n}{dx^n}[f(x)]=f^{(n)}(x)=n!\cdot a_n+(n+1)!\cdot a_{n+1}\cdot x+\dots\text{.}
\end{equation*}
 
What must \(a_n\)  be to produce the correct value for \(f^{(n)}(0)\text{?}\) 
Fact   9.4.3 . 
 
 In fact, the functions that can be represented as power series are exactly those functions which are infinitely differentiable on some open interval.
Definition   9.4.4 . 
 
The Taylor series  generated by \(f(x)\)  and centered  at \(x=c\)  is given by
\begin{align*}
f(x)&=\sum_{n=0}^\infty \frac{f^{(n)}(c)}{n!}(x-c)^n\\
&=f(c)+f^\prime(c)(x-c)+\frac{f^{\prime\prime}(c)}{2!}(x-c)^2+\frac{f^{(3)}(c)}{3!}(x-c)^3+\ldots
\end{align*}
with an interval of convergence determinable by series convergence rules.
  
When \(c=0\text{,}\) 
\begin{align*}
f(x)&=\sum_{n=0}^\infty \frac{f^{(n)}(0)}{n!}x^n\\
&=f(0)+f^\prime(0)x+\frac{f^{\prime\prime}(0)}{2!}x^2+\frac{f^{(3)}(0)}{3!}x^3+\ldots
\end{align*}
is called the Maclaurin series  generated by \(f\text{.}\) 
 
Activity   9.4.5 . 
 
Observe that \(f(x)=\sin(x)\)  is a function such that:
\begin{equation*}
\begin{array}{c|c|c|c|c|c|c|c}
f(0) & f'(0) & f''(0) & f^{(3)}(0) & f^{(4)}(0) & f^{(5)}(0) & f^{(6)}(0) & f^{(7)}(0) \\
\hline
\sin(0) & \cos(0) & -\sin(0) & -\cos(0) & \sin(0) & \cos(0) & -\sin(0) & -\cos(0) \\
\hline
0 & 1 & 0 & -1 & 0 & 1 & 0 & -1
\end{array}
\end{equation*}
 (a) Given the zeros appearing for every even derivative above, which of these is a valid simplification of the Maclarin series \(\displaystyle\sum_{n=0}^\infty\frac{f^{(n)}(0)}{n!}x^n\)  for \(\sin(x)\text{?}\) 
\(\displaystyle \sum_{n=1}^\infty\frac{f^{(n)}(0)}{n!}x^n\) 
\(\displaystyle \sum_{2n=0}^\infty\frac{f^{(n)}(0)}{n!}x^n\) 
\(\displaystyle \sum_{n=0}^\infty\frac{f^{(2n)}(0)}{(2n)!}x^{2n}\) 
\(\displaystyle \sum_{n=0}^\infty\frac{f^{(2n+1)}(0)}{(2n+1)!}x^{2n+1}\) 
 (b) 
Now consider the following consolidated chart:
\begin{equation*}
\begin{array}{c|c|c|c|c|c|c|c}
f^{(1)}(0) & f^{(3)}(0) &f^{(5)}(0) & f^{(7)}(0) \\
\hline
\cos(0) & -\cos(0) &  \cos(0) & -\cos(0) \\
\hline
1 &  -1 & 1 &  -1
\end{array}
\end{equation*}
 
Which formula yields these alternating \(1\) s and \(-1\) s appearing for \(f^{(2n+1)}(0)\text{?}\) 
\(\displaystyle f^{(2n+1)}(0)=(-1)^n\) 
\(\displaystyle f^{(2n+1)}(0)=(-1)^{n+1}\) 
\(\displaystyle f^{(2n+1)}(0)=(-1)^{2n}\) 
\(\displaystyle f^{(2n+1)}(0)=(-1)^{2n+1}\) 
 
Fact   9.4.6 . 
 
The power series we’ve introduced for each of the following functions are in fact their Maclaurin series (Taylor series centered at \(0\) ).
\begin{align*}
\frac{1}{1-x} = \sum_{n=0}^\infty \frac{n!}{n!}x^n\amp= 1+x+x^2+x^3+\dots\\
e^x = \sum_{n=0}^\infty \frac{1}{n!}x^n\amp= 1+x+\frac{x^2}{2}+\frac{x^3}{6}+\dots\\
\cos(x)= \sum_{n=0}^\infty \frac{(-1)^n}{(2n)!}x^{2n}\amp =1-\frac{x^2}{2}+\frac{x^4}{24}-\frac{x^6}{720}+\dots\\
\sin(x)=\displaystyle \sum_{n=0}^\infty \frac{(-1)^n}{(2n+1)!}x^{2n+1}\amp =x-\frac{x^3}{6}+\frac{x^5}{120}-\frac{x^7}{5040}+\dots
\end{align*}
Definition   9.4.7 . 
 
For a function \(f(x)\)  with a Taylor series centered at \(x=c\text{,}\) 
\begin{align*}
f(x) \amp\approx T_k(x)\\
\amp = \sum_{n=0}^k \frac{f^{(n)}(c)}{n!}(x-c)^n \\
\amp = f(c)+f^\prime(c)(x-c)+\frac{f^{\prime\prime}(c)}{2!}(x-c)^2+
\ldots+\frac{f^{(k)}(c)}{k!}(x-c)^k
\end{align*}
where \(T_k(x)\)  is called the \(k^{th}\)  degree Taylor polynomial  generated by \(f\)  and centered at \(x=c\text{.}\) 
  The \(k^{th}\)  degree Taylor polynomial can be seen as the “best” polynomial of degree \(k\)  or less for approximating \(f(x)\)  for values close to \(x=c\text{.}\)  Note that  the \(1^{st}\)  degree Taylor polynomial is also known as the linearization  of \(f\text{.}\) 
Activity   9.4.8 . 
 
Let \(f(x)\)  be a function such that:
\begin{equation*}
\begin{array}{c|c|c|c|c|c|c}
f(4) & f'(4) & f''(4) & f'''(4) & f^{(4)}(4) & f^{(5)}(4) & f^{(6)}(4) \\
\hline
0 & 1 & 2 & 3 & 4 & 5 & 6 
\end{array}
\end{equation*}
 (a) Find a Taylor polynomial for \(f(x)\)  centered at \(x=4\)  of degree \(3\text{.}\) 
(b) Using the table above, find a general closed form for \(f^{(n)}(4)\text{.}\) 
(c) Use (b) to find a Taylor series for \(f(x)\)  centered at \(x=4\text{.}\) 
Activity   9.4.9 . 
 
Let \(f(x)\)  be a function such that:
\begin{equation*}
\begin{array}{c|c|c|c|c|c|c}
f(-2) & f'(-2) & f''(-2) & f'''(-2) & f^{(4)}(-2) & f^{(5)}(-2) & f^{(6)}(-2) \\
\hline
0 & 2 & -16 & 54 & -128 & 250 & -432 
\end{array}
\end{equation*}
 (a) Find a Taylor polynomial for \(f(x)\)  centered at \(x=-2\)  of degree \(3\text{.}\) 
(b) Using the table above, find a general closed form for \(f^{(n)}(-2)\text{.}\) 
(c) Use (b) to find a Taylor series for \(f(x)\)  centered at \(x=-2\text{.}\) 
Definition   9.4.11 .   Euler’s Identity. 
  
For any real number \(\theta\text{,}\) 
\begin{align*}
e^{i\theta}  & =  1+\displaystyle\frac{i\theta}{1!}+\displaystyle\frac{(i\theta)^2}{2!}+\displaystyle\frac{(i\theta)^3}{3!}+\displaystyle\frac{(i\theta)^4}{4!}+\displaystyle\frac{(i\theta)^5}{5!}+\displaystyle\frac{(i\theta)^6}{6!}+\displaystyle\frac{(i\theta)^7}{7!}+\displaystyle\frac{(i\theta)^8}{8!}+\ldots\\
& =  1+i\theta-\displaystyle\frac{\theta^2}{2!}-\displaystyle\frac{i\theta^3}{3!}+\displaystyle\frac{\theta^4}{4!}+\displaystyle\frac{i\theta^5}{5!}-\displaystyle\frac{\theta^6}{6!}-\displaystyle\frac{i\theta^7}{7!}+\displaystyle\frac{\theta^8}{8!}+\ldots\\
& =  \left(1-\displaystyle\frac{\theta^2}{2!}+\displaystyle\frac{\theta^4}{4!}-\displaystyle\frac{\theta^6}{6!}+\ldots\right)+i\left(\theta-\displaystyle\frac{\theta^3}{3!}+\displaystyle\frac{\theta^5}{5!}-\displaystyle\frac{\theta^7}{7!}+\ldots\right)\\
& =  \cos(\theta)+i\sin(\theta).
\end{align*}
 
Activity   9.4.12 . 
 
Use Euler’s identity to evaluate \(e^{i\pi}\text{.}\) 
Subsection   9.4.2   Videos 
 
Figure   191.    Video: Determine a Taylor or Maclaurin series for a function
Subsection   9.4.3   Exercises