Skip to main content  Contents  Prev  Up Next  \(\newcommand{\markedPivot}[1]{\boxed{#1}}
\newcommand{\IR}{\mathbb{R}}
\newcommand{\IC}{\mathbb{C}}
\renewcommand{\P}{\mathcal{P}}
\renewcommand{\Im}{\operatorname{Im}}
\newcommand{\RREF}{\operatorname{RREF}}
\newcommand{\vspan}{\operatorname{span}}
\newcommand{\setList}[1]{\left\{#1\right\}}
\newcommand{\setBuilder}[2]{\left\{#1\,\middle|\,#2\right\}}
\newcommand{\unknown}{\,{\color{gray}?}\,}
\newcommand{\drawtruss}[2][1]{
\begin{tikzpicture}[scale=#1, every node/.style={scale=#1}]
\draw (0,0) node[left,magenta]{C} -- 
      (1,1.71) node[left,magenta]{A} -- 
      (2,0) node[above,magenta]{D} -- cycle;
\draw (2,0) -- 
      (3,1.71) node[right,magenta]{B} -- 
      (1,1.71) -- cycle;
\draw (3,1.71) -- (4,0) node[right,magenta]{E} -- (2,0) -- cycle;
\draw[blue] (0,0) -- (0.25,-0.425) -- (-0.25,-0.425) -- cycle;
\draw[blue] (4,0) -- (4.25,-0.425) -- (3.75,-0.425) -- cycle;
\draw[thick,red,->] (2,0) -- (2,-0.75);
#2
\end{tikzpicture}
}
\newcommand{\trussNormalForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, blue,->] (4,0) -- (3.5,0.5);
}
\newcommand{\trussCompletion}{
\trussNormalForces
\draw [thick, magenta,<->] (0.4,0.684) -- (0.6,1.026);
\draw [thick, magenta,<->] (3.4,1.026) -- (3.6,0.684);
\draw [thick, magenta,<->] (1.8,1.71) -- (2.2,1.71);
\draw [thick, magenta,->] (1.6,0.684) -- (1.5,0.855);
\draw [thick, magenta,<-] (1.5,0.855) -- (1.4,1.026);
\draw [thick, magenta,->] (2.4,0.684) -- (2.5,0.855);
\draw [thick, magenta,<-] (2.5,0.855) -- (2.6,1.026);
}
\newcommand{\trussCForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, magenta,->] (0,0) -- (0.4,0.684);
\draw [thick, magenta,->] (0,0) -- (0.5,0);
}
\newcommand{\trussStrutVariables}{
\node[above] at (2,1.71) {\(x_1\)};
\node[left] at (0.5,0.866) {\(x_2\)};
\node[left] at (1.5,0.866) {\(x_3\)};
\node[right] at (2.5,0.866) {\(x_4\)};
\node[right] at (3.5,0.866) {\(x_5\)};
\node[below] at (1,0) {\(x_6\)};
\node[below] at (3,0) {\(x_7\)};
}
\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\DeclareMathOperator{\arcsec}{arcsec}
\DeclareMathOperator{\arccot}{arccot}
\DeclareMathOperator{\arccsc}{arccsc}
\newcommand{\tuple}[1]{\left\langle#1\right\rangle}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle     \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle        \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle      \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\) 
Section   9.3   Manipulation of Power Series (PS3) 
 
Learning Outcomes 
Subsection   9.3.1   Activities 
 
Activity   9.3.1 . 
 
How might we use the known geometric power series
\begin{equation*}
\frac{1}{1-x}=\sum_{n=0}^\infty x^n=1+x+x^2+x^3+x^4+\dots
\end{equation*}
to find the value of
\begin{equation*}
\unknown =\sum_{n=0}^\infty nx^{n-1}=0+1+2x+3x^2+4x^3+\dots\text{?}
\end{equation*}
 (a) Which operation describes the relationship between these two series?
Bifurcation
Composition
Differentiation
Multiplication
 (b) What is the result of applying this operation to \(\frac{1}{1-x}\text{?}\) 
\(\displaystyle 0\) 
\(\displaystyle \frac{1}{(1-x)^2}\) 
\(\displaystyle 1-\frac{1}{x}\) 
\(\displaystyle \frac{x}{1-x^2}\) 
 
Fact   9.3.2 . 
 
Whenever a function is defined as a power series:
\begin{equation*}
f(x)=\sum_{n=0}^\infty a_n(x-c)^n
\end{equation*}
then its derivative and general antiderivative are also defined as power series with the same domain of convergence as \(f(x)\text{,}\)  found by differentiating or integrating term-by-term:
\begin{align*}
\frac{d}{dx}[f(x)] \amp=\sum_{n=0}^\infty\frac{d}{dx}\left[a_n(x-c)^n\right]\\
\amp=\sum_{n=0}^\infty na_n(x-c)^{n-1}\\
\int f(x)\,dx\amp=C+\sum_{n=0}^\infty\left[\int a_n(x-c)^n\,dx\right]\\
\amp=C+\sum_{n=0}^\infty\frac{(x-c)^{n+1}}{n+1}
\end{align*}
 
Activity   9.3.3 . 
 
Let’s investigate the power series
\begin{equation*}
\exp(x)=\displaystyle \sum_{n=0}^\infty \frac{1}{n!}x^n=1+x+\frac{x^2}{2}+\frac{x^3}{6}+\frac{x^4}{24}+\dots\text{.}
\end{equation*}
 (a) What is the value of \(\exp(0)\text{?}\) 
\(0\text{.}\) 
\(1\text{.}\) 
\(2\text{.}\) 
\(\infty\text{.}\) 
 (b) What is the value of \(\exp'(x)\text{?}\) 
\(0+1+x+\frac{x^2}{2}+\frac{x^3}{6}+\dots\text{.}\) 
\(1+x+\frac{x^2}{6}+\frac{x^3}{24}+\frac{x^4}{120}+\dots\text{.}\) 
\(0+1+x+\frac{x^2}{3}+\frac{x^3}{12}+\frac{x^4}{60}+\dots\text{.}\) 
\(1+x+\frac{x^2}{3}+\frac{x^3}{12}+\frac{x^4}{60}+\dots\text{.}\) 
 (c) What can we conclude from our calculation of \(f'(x)\text{?}\) 
\(\exp'(x)=[\exp(x)]^2\text{.}\) 
\(\exp'(x)=\exp(x^2)\text{.}\) 
\(\exp'(x)=2\exp(x)\text{.}\) 
\(\exp'(x)=\exp(x)\text{.}\) 
 (d) What function do we know of that shares each of these properites?
\(\displaystyle \exp(x)=\frac{1}{1+x}\) 
\(\displaystyle \exp(x)=\cos(x)\) 
\(\displaystyle \exp(x)=e^x\) 
\(\displaystyle \exp(x)=0\) 
 
Fact   9.3.4 . 
 
We have that
\begin{equation*}
\exp(x)=e^x=\displaystyle \sum_{n=0}^\infty \frac{1}{n!}x^n=\sum_{n=0}^\infty \frac{x^n}{n!}.
\end{equation*}
That is, for any real number \(x\text{,}\)  the series \(\exp(x)=\displaystyle \sum_{n=0}^\infty \frac{1}{n!}x^n\)  will converge to \(e^x\text{.}\) 
 
Fact   9.3.5 . 
 
We may similarly determine that
\begin{equation*}
\cos(x)=\displaystyle \sum_{n=0}^\infty \frac{(-1)^n}{(2n)!}x^{2n}=\sum_{n=0}^\infty (-1)^n\frac{x^{2n}}{(2n)!}
\end{equation*}
and
\begin{equation*}
\sin(x)=\displaystyle \sum_{n=0}^\infty \frac{(-1)^n}{(2n+1)!}x^{2n+1}=\sum_{n=0}^\infty (-1)^n\frac{x^{2n+1}}{(2n+1)!}
\end{equation*}
for all real numbers 
\(x\text{.}\)  However, we will delay until 
Fact 9.4.6  to prove this fact another way.
 
Activity   9.3.6 . 
 
Suppose we wish to find the power series for the function \(f(x)=e^{2x}\)  by modifying the power series \(\exp(z)=e^z=\displaystyle\sum_{n=0}^\infty \frac{z^n}{n!}.\) 
(a) 
Substituting \(z=2x\text{,}\)  what is the power series for \(\exp(2x)\text{?}\) 
\(\exp(2x)=\displaystyle\sum_{n=0}^\infty \frac{2x^n}{n!}=2+2x+x^2+\frac{1}{3}x^3+\dots\text{.}\) 
\(\exp(2x)=\displaystyle\sum_{n=0}^\infty \frac{2x^{n+1}}{n!}=2x+2x^2+x^3+\frac{1}{3}x^4+\dots\text{.}\) 
\(\exp(2x)=\displaystyle\sum_{n=0}^\infty \frac{(2x)^n}{n!}=1+2x+2x^2+\frac{4}{3}x^3+\dots\text{.}\) 
\(\exp(2x)=\displaystyle\sum_{n=0}^\infty \frac{x^n}{(2n)!}=1+\frac{x}{2}+\frac{x^2}{4}+\frac{x^3}{720}+\dots\text{.}\) 
 
 (b) What is the interval of convergence for \(x\)  for this series?
\(\left(-\infty,\infty\right)\text{.}\) 
\(\displaystyle \left(-\frac{1}{2},\frac{1}{2}\right)\text{.}\) 
\(\displaystyle \left(0,\frac{1}{2}\right)\text{.}\) 
\(\displaystyle \left(-\frac{1}{2},\frac{1}{2}\right]\text{.}\) 
 
Fact   9.3.7 . 
 
If a power series
\begin{equation*}
f(x)=\sum_{n=0}^\infty a_n(x-c)^n
\end{equation*}
is known, then for any polynomial \(g(x)\)  the composition \(f\circ g\)  has a power series given by
\begin{equation*}
(f\circ g)(x)=f(g(x))=\sum_{n=0}^\infty a_n(g(x)-c)^n
\end{equation*}
where the domain of convergence is transformed based upon the transformation given by \(g(x)\text{.}\) 
  
For example, if \(f(x)\)  has the domain of convergence \(-2\leq x < 2\text{,}\)  then \(f(2x+4)\)  has the domain of convergence:
\begin{equation*}
-2\leq 2x+4 < 2
\end{equation*}
\begin{equation*}
-6\leq 2x < -2
\end{equation*}
\begin{equation*}
-3\leq x < -1
\end{equation*}
 
Activity   9.3.8 . 
 
Suppose we wish to find the power series for the function \(f(x)=\frac{1}{x}\text{.}\) 
(a) 
Which of the following represents the power series for \(g(r)=\frac{1}{1-r}\text{?}\) 
\(g(r)=\displaystyle\sum_{n=0}^\infty rx^n\text{.}\) 
\(g(r)=\displaystyle\sum_{n=0}^\infty (rx)^n\text{.}\) 
\(g(r)=\displaystyle\sum_{n=0}^\infty r^n\text{.}\) 
\(g(r)=\displaystyle\sum_{r=0}^\infty x^r\text{.}\) 
 
 (b) 
For what value of \(r\)  is \(\frac{1}{1-r}=\frac{1}{x}\text{?}\) 
\(r=x-1\text{.}\) 
\(r=1-x\text{.}\) 
\(r=x+1\text{.}\) 
\(r=-x\text{.}\) 
 
 (c) 
Substituting \(r\)  with this value, which of the following is a power series for \(f(x)=\frac{1}{x}\text{?}\) 
\(f(x)=\displaystyle\sum_{n=0}^\infty (-x)^n\text{.}\) 
\(f(x)=\displaystyle\sum_{n=0}^\infty (1-x)^n\text{.}\) 
\(f(x)=\displaystyle\sum_{n=0}^\infty (x-1)^n\text{.}\) 
\(f(x)=\displaystyle\sum_{n=0}^\infty (1+x)^n\text{.}\) 
 
 (d) 
Given that the domain of convergence for \(r\)  in \(f(r)\)  is \(-1 < r < 1\text{,}\)  what should be the domain of convergence for \(x\)  in \(f(x)\text{?}\) 
\(-1 < x < 1\text{.}\) 
\(-2 < x < 0\text{.}\) 
\(-2 < x < 2\text{.}\) 
\(0 < x < 2\text{.}\) 
 
 
Activity   9.3.9 . 
 
Suppose we wish to find the power series for the function \(f(x)=\frac{1}{3-2x}\text{.}\)  Recall that \(g(x)=\frac{1}{1-r}=\displaystyle\sum_{n=0}^\infty r^n.\) 
(a) 
For what value of \(r\)  is \(\frac{1}{1-r}=\frac{1}{3-2x}\text{?}\) 
\(r=2x-2\text{.}\) 
\(r=2-2x\text{.}\) 
\(r=2x-3\text{.}\) 
\(r=3-2x\text{.}\) 
 
 (b) 
Evaluating \(r\)  at the previously found value, which of the following is the power series of \(f(x)=\frac{1}{3-2x}\text{?}\) 
\(f(x)=\displaystyle\sum_{n=0}^\infty (3-2x)^n\text{.}\) 
\(f(x)=\displaystyle\sum_{n=0}^\infty (2x-3)^n\text{.}\) 
\(f(x)=\displaystyle\sum_{n=0}^\infty (2-2x)^n\text{.}\) 
\(f(x)=\displaystyle\sum_{n=0}^\infty (2x-2)^n\text{.}\) 
 
 (c) 
Given that the interval of convergence for \(r\)  is \(-1 < r < 1\text{,}\)  what is the interval of convergence for \(x\text{?}\) 
\(-1 < x < \frac{3}{2}\text{.}\) 
\(-\frac{1}{2} < x < 1\text{.}\) 
\(\frac{1}{2} < x < \frac{3}{2}\text{.}\) 
\(-\frac{1}{2} < x < \frac{3}{2}\text{.}\) 
 
 
Activity   9.3.10 . 
 
Suppose we wish to find the power series for the function \(f(x)=\frac{1}{1+x^2}\text{.}\)  Recall that \(g(x)=\frac{1}{1-r}=\displaystyle\sum_{n=0}^\infty r^n.\) 
(a) 
For what value of \(r\)  is \(\frac{1}{1-r}=\frac{1}{1+x^2}\text{?}\) 
\(r=x^2\text{.}\) 
\(r=-x^2\text{.}\) 
\(r=1-x^2\text{.}\) 
\(r=x^2-1\text{.}\) 
 
 (b) 
Evaluating \(r\)  at the previously found value, which of the following is the power series of \(f(x)=\frac{1}{1+x^2}\text{?}\) 
\(\displaystyle\frac{1}{1+x^2}=\sum_{n=0}^\infty (-1)^nx^{2n}\text{.}\) 
\(\displaystyle\frac{1}{1+x^2}=\sum_{n=0}^\infty (1-x^2)^n\text{.}\) 
\(\displaystyle\frac{1}{1+x^2}=\sum_{n=0}^\infty x^{2n}\text{.}\) 
\(\displaystyle\frac{1}{1+x^2}=\sum_{n=0}^\infty (x^2-1)^n\text{.}\) 
 
 (c) 
Given that the interval of convergence for \(r\)  is \(-1 < r < 1\text{,}\)  what is the interval of convergence for \(x\text{?}\) 
\(-1 < x < 1\text{.}\) 
\(-1 < x < 0\text{.}\) 
\(0 < x < 1\text{.}\) 
\(0 < x < 4\text{.}\) 
 
 (d) 
How can the power series for \(\frac{1}{1+x^2}\)  be manipulated to obtain a power series for \(\arctan(x)\text{?}\) 
Differentiate each term.
Integrate each term.
Replace \(x\)  with \(x^2\)  in each term.
Replace \(x\)  with \(1/x\)  in each term.
 
 (e) 
Which of these power series is the result of this manipulation?
\(\displaystyle\arctan(x)=\sum_{n=0}^\infty (-1)^n\frac{x^{2n+1}}{2n+1}\text{.}\) 
\(\displaystyle\arctan(x)=\sum_{n=0}^\infty (-1)^n\frac{x^{2n-1}}{2n-1}\text{.}\) 
\(\displaystyle\arctan(x)=\sum_{n=0}^\infty (-1)^n(2n)x^{2n-1}\text{.}\) 
\(\displaystyle\arctan(x)=\sum_{n=0}^\infty (-1)^n(2n+1)x^{2n}\text{.}\) 
 
 
Activity   9.3.11 . 
 
What function \(f(x)\)  has power series \(f(x)=\displaystyle \sum_{n=0}^\infty \frac{(-1)^nx^n}{n!}=1-x+\frac{x^2}{2}-\frac{x^3}{6}+\cdots\text{?}\) 
\(f(x)=(-1)^ne^x\text{.}\) 
\(f(x)=-e^x\text{.}\) 
\(f(x)=e^{-x}\text{.}\) 
\(f(x)=-e^{-x}\text{.}\) 
 
 
Activity   9.3.12 . 
 
What function \(f(x)\)  has power series \(f(x)=\displaystyle \sum_{n=0}^\infty \frac{x^{n+3}}{n!}=x^3+x^4+\frac{x^5}{2}+\frac{x^6}{6}+\cdots\text{?}\) 
\(f(x)=e^{x+3}\text{.}\) 
\(f(x)=e^{x^3}\text{.}\) 
\(f(x)=e^{3x}\text{.}\) 
\(f(x)=x^3e^{x}\text{.}\) 
 
 
Fact   9.3.13 . 
 
If a power series
\begin{equation*}
f(x)=\sum_{n=0}^\infty a_n(x-c)^n
\end{equation*}
is known, then for any polynomial \(g(x)\)  the product \(fg\)  has a power series given by
\begin{equation*}
(fg)(x)=f(x)g(x)=\sum_{n=0}^\infty a_ng(x)(x-c)^n
\end{equation*}
where the domain of convergence is the same as \(f(x)\text{.}\) 
 
Activity   9.3.14 . 
 
What function \(f(x)\)  has power series \(f(x)=\displaystyle \sum_{n=3}^\infty x^n=x^3+x^4+\cdots\text{?}\) 
 
\(f(x)=\frac{1}{1-3x}\text{.}\) 
\(f(x)=\frac{3}{1-x}\text{.}\) 
\(f(x)=\frac{1}{1-x}-x^2-x-1\text{.}\) 
\(f(x)=\frac{x^3}{1-x}\text{.}\) 
 
Activity   9.3.15 . 
 
The function \(n(x)=e^{-x^2}\)  is one whose integrals are very important for statistics.  However, it does not admit an elementary antiderivative.
(a) 
Which of the following best represents the power series for \(n(x)=e^{-x^2}\text{?}\) 
\(n(x)=\displaystyle -x^2\sum_{n=0}^\infty \frac{1}{n!}x^n=\displaystyle \sum_{n=0}^\infty -\frac{1}{n!}x^{n+2}\text{.}\) 
\(n(x)=\displaystyle \sum_{n=0}^\infty \frac{1}{n!}(-x^2)^n=\displaystyle \sum_{n=0}^\infty \frac{1}{n!}(-1)^{n}x^{2n}\text{.}\) 
\(n(x)=\displaystyle x^{-2}\sum_{n=0}^\infty \frac{1}{n!}(-x)^n=\displaystyle \sum_{n=0}^\infty \frac{1}{n!}(-1)^{n+2}x^{n+2}\text{.}\) 
 
 (b) 
Which of the following best represents a degree 10 polynomial that approximates \(n(x)\text{?}\) 
\(n_{10}(x)=\displaystyle -x^2-x^3-\frac{1}{2}x^4-\frac{1}{6}x^5-\frac{1}{24}x^6-\frac{1}{120}x^7-\frac{1}{720}x^8-\frac{1}{5040}x^9-\frac{1}{40320}x^{10}\text{.}\) 
\(n_{10}(x)=\displaystyle x^2-x^3+\frac{1}{2}x^4-\frac{1}{6}x^5+\frac{1}{24}x^6-\frac{1}{120}x^7+\frac{1}{720}x^8-\frac{1}{5040}x^9+\frac{1}{40320}x^{10}\text{.}\) 
\(n_{10}(x)=1-x^2+\frac{1}{2}x^4-\frac{1}{6}x^6+\frac{1}{24}x^8-\frac{1}{120}x^{10}\text{.}\) 
 
 (c) Use your choice of \(n_{10}(x)\)  to estimate \(\displaystyle \int_0^1 n(x)dx\)  by computing \(\displaystyle \int_0^1 n_{10}(x)dx\text{.}\) 
Activity   9.3.16 . 
 
Recall  that
\begin{equation*}
g(x)=\displaystyle\sum_{n=0}^\infty x^n=\frac{1}{1-x}
\end{equation*}
for 
\(-1< x< 1\text{.}\) 
(a) 
Which of the following represents an antiderivative of \(g(x)=\displaystyle \frac{1}{1-x}\text{?}\) 
\(G(x)=C+\displaystyle\sum_{n=0}^\infty x^{n+1}\text{.}\) 
\(G(x)=C+\displaystyle\sum_{n=1}^\infty \frac{1}{n}x^{n+1}\text{.}\) 
\(G(x)=C+\displaystyle\sum_{n=0}^\infty \frac{1}{n+1}x^{n+1}\text{.}\) 
\(G(x)=C+\displaystyle\sum_{n=1}^\infty \frac{1}{n+1}x^{n}\text{.}\) 
 
 (b) Find the interval of convergence for this series.
(c) Recall that \(\tilde{G}(x)=\ln|1-x|\)  is an antiderivative of \(g(x)=\displaystyle \frac{1}{1-x}\text{.}\)   For which \(C\)  is your chosen \(G(x)=\ln|1-x|\text{?}\) 
(d) Use \(G_4(x)\)  to estimate \(\displaystyle \int_2^4 \ln|1-x|dx\text{.}\) 
Activity   9.3.17 . 
 
Recall that the power series for \(f(x)=\sin\left(x\right)\)  is:
\begin{equation*}
\sin\left(x\right)=\sum_{n=0}^{\infty} \frac{\left(-1\right)^{n} x^{2 \, n + 1}}{\left(2 \, n + 1\right)!}.
\end{equation*}
 (a) Find a power series for \(\sin\left(-5 \, x^{2}\right)\text{.}\) 
(b) Find a power series for \(x^{4} \sin\left(x\right)\text{.}\) 
(c) Find a power series for \(F(x)\text{,}\)  an antiderivative of \(f(x)\)  such that \(F(0)=4\text{.}\) 
Activity   9.3.18 . 
 
Recall that the power series for \(f(x)=-\frac{1}{x - 1}\)  is:
\begin{equation*}
-\frac{1}{x - 1}=\sum_{n=0}^{\infty} x^{n}.
\end{equation*}
 (a) Find a power series for \(\frac{1}{x^{4} + 1}\text{.}\) 
(b) Find a power series for \(-\frac{x^{5}}{x - 1}\text{.}\) 
(c) Find a power series for \(f'(x)\text{.}\) 
Activity   9.3.19 . 
 
Recall that
\begin{equation*}
g(x)=\displaystyle\sum_{n=0}^\infty x^n=\frac{1}{1-x}
\end{equation*}
for 
\(-1< x< 1\)  and 
\(\frac{d}{dx}[\arctan(x)]=\frac{1}{1+x^2}=g(-x^2)\text{.}\)   We computed the power series for  
\(g(-x^2)\)  in 
Activity 9.3.10 .
 (a) Integrate this power series and find \(C\)  to find a power series for \(H(x)=\arctan(x)\text{.}\)   Recall that \(\arctan(0)=0\text{.}\) 
(b) Find the interval of convergence for this series.
Activity   9.3.20 . 
 
(a) Find the power series for \(\alpha(x)=\ln|x|\text{.}\) 
(b) Find the interval of convergence for this series.
Activity   9.3.21 . 
 
(a) Find the power series for \(\beta(x)=\arctan(-3x^2)\text{.}\) 
(b) Find the interval of convergence for this series.
Subsection   9.3.2   Videos 
 
Figure   190.    Video: Compute power series by manipulating known exponential/trigonometric/binomial power series
Subsection   9.3.3   Exercises